Algebraic Number Theory Exercise Sheet 4

Prof. Dr. Nikita Geldhauser	Winter Semester 2024-25
PD Dr. Maksim Zhykhovich	11.11.2024

Exercise 1. Let $P(X) = X^n + aX + b \in \mathbb{Z}[X]$ be an irreducible polynomial. Let $\alpha \in \mathbb{C}$ be a root of P(X) and let $K = \mathbb{Q}(\alpha)$. Show that

$$D_{\mathbb{Q}}^{K}(1,\alpha,...,\alpha^{n-1}) = (-1)^{\frac{1}{2}n(n-1)}(n^{n}b^{n-1} + a^{n}(1-n)^{n-1}) + a^{n}(1-n)^{n-1} +$$

Hint: Use Exercise 3.1, Sheet 3.

Exercise 2. For positive integer n let ζ_n denote a primitive n-th root of unity. Let p be an odd prime number, let $\mathbb{Q}(\zeta_p)$ be the corresponding cyclotomic field. Recall that $\mathbb{Q}(\zeta_p)/\mathbb{Q}$ is Galois field extension and $\operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q}) = (\mathbb{Z}/p\mathbb{Z})^*$.

(1) Deduce that there is a unique intermediate field K of $\mathbb{Q}(\zeta_p)/\mathbb{Q}$, which is of degree 2 over \mathbb{Q} .

(2) Using Theorem 13 from the lecture and the fact, that $d_{\mathbb{Q}(\zeta_p)} = (-1)^{\frac{p-1}{2}} p^{p-2}$ (Exercise 3.2, Sheet 3), find explicitly the unique quadratic extension K/\mathbb{Q} contained in $\mathbb{Q}(\zeta_p)$.

(3) Deduce that any quadratic extension of \mathbb{Q} is contained inside some cyclotomic field.

Hint: Show that $\sqrt{2} \in \mathbb{Q}(\zeta_8)$ and use that $\mathbb{Q}(\zeta_n) \subset \mathbb{Q}(\zeta_{nm})$ for any positive integers n and m.

Exercise 3. Let A be a noetherian integral domain. For any non-zero element $f \in A$ denote by A_f the localization $S^{-1}A$, where $S = \{f^k \mid k \ge 0\}$.

Let $f_1, ..., f_n$ be elements from A, such that the ideal generated by $f_1, ..., f_n$ is A. Show that A is a Dedekind ring if and only if A_{f_i} is a Dedekind ring for any i = 1, ..., n.

Exercise 4. Let $L = \mathbb{Q}(\alpha)$ be a quadratic field extension of \mathbb{Q} , where $\alpha^2 = -5$. Let \mathcal{O}_L be the ring of integers of L. Recall that $\mathcal{O}_L = \mathbb{Z}[\alpha]$.

(1) Show that the ideal $\rho = (2, 1 + \alpha)$ is prime and not principle in \mathcal{O}_L .

(2) In the lecture we will see that the localization $(\mathcal{O}_L)_{\rho}$ is a PID. Find a generator of the ideal $\rho(\mathcal{O}_L)_{\rho}$.